THE SIMPLEST GALILEAN-INVARIANT

AND THERMODYNAMICALLY CONSISTENT CONSERVATION LAWS

S. K. Godunov and V. M. Gordienko

Abstract

This paper gives an introduction to formalization of Galilean-invariant and thermodynamically consistent equations of mathematical physics in which unknowns are transformed in rotations by irreducible representations of integer weights. This formalization is based on the theory of representations of the group $S O(3)$.

Introduction. Investigation of thermodynamically consistent equations and systems used in problems of continuum mechanics and physics was begun in the sixties of the 20th century [1, 2]. Originally they were used to construct examples of solutions. More recently, the number of problems studied with the help of such equations has increased and the systems of equations have become more and more complex (see [3-14]). In this connection, attempts have been made to use the techniques of group representation theory to describe rotationally-invariant thermodynamically consistent systems $[15,16]$. However, these attempts have not yet resulted in a transparent theory.

In the present paper, which is a continuation of the group analysis of partial differential equations [12-16], we study only the simplest thermodynamically consistent equations, with emphasis on detailed investigation of their invariance under Galilean transformations of coordinate systems. Such transformations are a superposition of a conversion to a coordinate system that moves at constant velocity and an orthogonal transformation of spatial coordinates. In this case, unknown vector-functions are transformed with the help of orthogonal representations of the rotation group $S O(3)$ and spatial reflections. In the present paper, we consider only rotations, and therefore, we do not distinguish between vectors and pseudovectors, which respond differently to rotations.

The tensor variables used in mechanics are generally transformed in rotations by representations of a rather complex structure, and they can be decomposed into the simplest irreducible representations. It should be noted that for tensors of the third and higher orders, such a decomposition is not unique. Therefore, much attention is given to the symbolism connected with the use of irreducible representations.

As an example, we give the decomposition of an arbitrary orthogonal tensor of the second order into irreducible components. Such a tensor consists of nine elements, which fill a 3×3 matrix, and splits into three tensor terms: a diagonal matrix with equal diagonal elements $a=\left(a_{11}+a_{22}+a_{33}\right) / 3$, a skew-symmetric tensor, and a symmetric tensor with zero trace.

The quantity a is a scalar: it is not changed by rotations of the coordinate system. The three nonzero elements of the skew-symmetric tensor is transformed as a 3D vector. The matrix of elements from the 5D linear space of symmetric tensors of the second order with zero trace is conveniently written as

$$
\begin{gathered}
a_{-2}\left(\begin{array}{ccc}
0 & 0 & -1 / \sqrt{2} \\
0 & 0 & 0 \\
-1 / \sqrt{2} & 0 & 0
\end{array}\right)+a_{-1}\left(\begin{array}{cc}
0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \\
+a_{0}\left(\begin{array}{cc}
-1 / \sqrt{6} & 0 \\
0 & 2 / \sqrt{6} \\
0 & 0 \\
0 & -1 / \sqrt{6}
\end{array}\right)+a_{1}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 / \sqrt{2} \\
0 & 1 / \sqrt{2} & 0
\end{array}\right)+a_{2}\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1 / \sqrt{2}
\end{array}\right) .
\end{gathered}
$$

Sobolev Institute of Mathematics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 43, No. 1, pp. 3-16, January-February, 2002. Original article submitted June 28, 2001.

In rotations, the vector $\left(a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}\right)^{\mathrm{t}}$, composed of the coefficients a_{j}, is transformed by the 5 D irreducible orthogonal representation of the rotation group.

All the conservation laws studied in this paper reduce to symmetric Friedrichs-hyperbolic equations. In such conservation laws, dissipative terms, i.e., viscous friction and diffusion, are ignored. To take these into consideration, the conservation laws should be modified. Here we give just one example of such modification for a scheme of modeling thermal relaxation in a multitemperature medium.

All papers on the theory of representations of the rotation group [17-22] of which we are aware consider only complex matrix elements of unitary representations of this group, whereas applications to problems of classical mechanics should be based on real matrices of orthogonal representations, whose matrix elements are given in Sec. 3. To find these elements, elementary but rather cumbersome calculations were made, which, in essence, repeat the scheme used in the theory of unitary representations (see [23]).

We believe that the present research is of interest for both mathematicians and specialists in applied fields, and the scheme proposed here can be extended to more complex equations and the equations of relativistic theory, in which thermodynamically consistent conservation laws are also widely used.

1. Description of the "Simplest" System and Its Preliminary Analysis. The aim of this paper is to describe a formal general scheme that covers many well-known Galilean-invariant systems of differential equations of phenomenological mathematical physics, which contain both the laws of conservation of mass, momentum, and energy and the law of increase (or conservation) of entropy. In writing each such system, we use the governing "thermodynamic potential" L that results from systematization of the various thermodynamic potentials appearing in concrete physical problems. The required functions are the variables $q_{0}, u_{1}, u_{2}, u_{3}, q_{1}, q_{2}, \ldots$, and T on which this potential depends:

$$
L=L\left(q_{0}, u_{1}, u_{2}, u_{3}, q_{1}, q_{2}, \ldots, T\right)
$$

It should be noted that in this paper, such "thermodynamic" variables also include the components u_{1}, u_{2}, and u_{3} of the velocity $\boldsymbol{u}=\boldsymbol{u}\left(x_{1}, x_{2}, x_{3}, t\right)$ at which points of a continuum move. The variable T is the temperature of the medium and the density is characterized by the quantity $L_{q_{0}}=L_{q_{0}}\left(q_{0}, u_{1}, u_{2}, u_{3}, q_{1}, q_{2}, \ldots, T\right)$ which is related to the variable q_{0} by means of the potential L.

Having specified the potential L, we can write a simple standard system of equations, whose properties are then studied in detail. We indicate which equations of the system describe the conservation laws, and under what constraint (on the thermodynamic potential) the systems are Galilean-invariant and ensure the (local) wellposedness of the Cauchy problem. At the end of this section, we give possible generalizations in which forces of viscosity, diffusion, etc., described by second-order derivatives are included in the equations. We now proceed to preliminary analysis of this "simplest" system. In conversion to a coordinate system moving at constant velocity relative to the initial coordinate system, the invariance of the equations chosen as the "simplest" is among the questions discussed in this section, and the invariance under rotations is considered in Sec. 2.

As the "simplest" systems, we choose systems of equations in the form

$$
\begin{gather*}
\frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{0}}}{\partial x_{k}}=0 \tag{1.1a}\\
\frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{u_{i}}}{\partial x_{k}}=0 \tag{1.1b}\\
\frac{\partial L_{q_{\gamma}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{\gamma}}}{\partial x_{k}}=-\varphi_{\gamma} \tag{1.1c}\\
\frac{\partial L_{T}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{T}}{\partial x_{k}}=\frac{q_{\gamma} \varphi_{\gamma}}{T} \tag{1.1d}
\end{gather*}
$$

(summation over repeated indices k and γ is performed). The divergent equations (1.1a) and (1.1b) model the laws of conservation of mass and momentum. The variables q_{γ} describe the internal state of the medium, e.g., the content of various chemical substances in the medium, and the right sides φ_{γ} model the rates of change of the parameters q_{γ}, e.g., reaction rates. The quantity L_{T} is the entropy per unit volume. By the law of increase of entropy, the right sides φ_{γ} should satisfy the inequality $q_{\gamma} \varphi_{\gamma} \geqslant 0$ (we assume that $T>0$).

Assuming that the unknown functions q_{0}, u_{k}, q_{γ}, and T are sufficiently smooth in the coordinates and time, from Eqs. (1.1) we can derive, as a consequence, one more equation, which is compatible with them. For this, we
multiply equality (1.1a) by q_{0}, equalities (1.1b) by u_{i}, and equalities (1.1c) and (1.1d) by q_{γ} and T, respectively, and use the identities

$$
\begin{gather*}
q_{0} d L_{q_{0}}+u_{i} d L_{u_{i}}+q_{\gamma} d L_{q_{\gamma}}+T d L_{T}=d E \tag{1.2}\\
q_{0} d\left(u_{k} L_{q_{0}}\right)+u_{i} d\left(u_{k} L\right)_{u_{i}}+q_{\gamma} d\left(u_{k} L\right)_{q_{\gamma}}+T d\left(u_{k} L\right)_{T}=d\left[u_{k}(E+L)\right]
\end{gather*}
$$

where $E=q_{0} L_{q_{0}}+u_{i} L_{u_{i}}+q_{\gamma} L_{q_{\gamma}}+T L_{T}-L$ is the Legendre transform of the potential L.
Using identities (1.2), we can transform the linear combination of Eqs. (1.1) with the chosen coefficients to the equality of divergent form

$$
\begin{equation*}
\frac{\partial E}{\partial t}+\frac{\partial\left[u_{k}(E+L)\right]}{\partial x_{k}}=0 \tag{1.3}
\end{equation*}
$$

In applied problems, this equality describes the law of conservation of energy. We note that here the zero right side is obtained by a coordinated choice of the right sides $-\varphi_{\gamma}$ and $q_{\gamma} \varphi_{\gamma} / T$ in Eqs. (1.1c) and (1.1d).

If the thermodynamic potential L is a convex function of its arguments, then (1.1) is a symmetric Friedrichshyperbolic system of equations, and this ensures correct (local) solvability of the Cauchy problem for smooth initial data. Indeed, denoting by r_{i} the unknowns $q_{0}, u_{1}, u_{2}, u_{3}, q_{1}, q_{2}, \ldots$, and T and by $M^{(k)}$ the products $M^{(k)}=u_{k} L$, we can write system (1.1)

$$
\frac{\partial L_{r_{i}}}{\partial t}+\frac{\partial M_{r_{i}}^{(k)}}{\partial x_{k}}=-\psi_{i}
$$

in equivalent form

$$
\begin{equation*}
L_{r_{i} r_{j}} \frac{\partial r_{j}}{\partial t}+M_{r_{i} r_{j}}^{(k)} \frac{\partial r_{j}}{\partial x_{k}}=-\psi_{i} \tag{1.4}
\end{equation*}
$$

with symmetric matrices of coefficients composed of the derivatives $L_{r_{i} r_{j}}$ and $M_{r_{i} r_{j}}^{(k)}$. The convexity of L is equivalent to positive definiteness of the matrix of the coefficients at the derivatives with respect to t. By Friedrichs' definition, systems (1.4) are called hyperbolic.

For convenience, the law of conservation of momentum (1.1b) is written as

$$
\begin{equation*}
\frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left(u_{k} L_{u_{i}}+\delta_{i k} L\right)}{\partial x_{k}}=0 \tag{1.5}
\end{equation*}
$$

We describe the transformation of Eqs. (1.1) and (1.3) in conversion to a moving coordinate system that moves at constant velocity relative to the initial system. Let the new coordinates y_{k} be related to the old coordinates by the equalities $y_{k}=x_{k}-U_{k} t \quad\left(U_{k}=\right.$ const $)$, so that the new velocity components are $v_{k}=u_{k}-U_{k}$. The remaining unknowns $q_{0}, q_{1}, q_{2}, \ldots$, and T do not change.

Let

$$
\tilde{L}\left(q_{0}, v_{1}, v_{2}, v_{3}, q_{1}, q_{2}, \ldots, T\right)=L\left(q_{0}, v_{1}+U_{1}, v_{2}+U_{2}, v_{3}+U_{3}, q_{1}, q_{2}, \ldots, T\right)
$$

In conversion to the moving coordinate system, equations of the form

$$
\frac{\partial F}{\partial t}+\frac{\partial G_{k}}{\partial x_{k}}=-f
$$

become

$$
\frac{\partial F}{\partial t}+\frac{\partial\left(G_{k}-U_{k} F\right)}{\partial y_{k}}=-f
$$

Moreover, it is evident that

$$
\tilde{L}_{q_{0}}=L_{q_{0}}, \quad \tilde{L}_{v_{k}}=L_{u_{k}}, \quad \tilde{L}_{q_{\gamma}}=L_{q_{\gamma}}, \quad \tilde{L}_{T}=L_{T}
$$

Therefore, equalities (1.1a), (1.1c), and (1.1d) are written as

$$
\begin{gathered}
\frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{q_{0}}-U_{k} L_{q_{0}}\right]}{\partial y_{k}}=0 \\
\frac{\partial L_{q_{\gamma}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{q_{\gamma}}-U_{k} L_{q_{\gamma}}\right]}{\partial y_{k}}=-\varphi_{\gamma}, \quad \frac{\partial L_{T}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{T}-U_{k} L_{T}\right]}{\partial y_{k}}=\frac{\varphi_{\gamma} q_{\gamma}}{T}
\end{gathered}
$$

and after the substitution $u_{k}-U_{k}=v_{k}$, they take the form that differs from the initial form only in notation:

$$
\frac{\partial \tilde{L}_{q_{0}}}{\partial t}+\frac{\partial\left(v_{k} \tilde{L}\right)_{q_{0}}}{\partial y_{k}}=0, \quad \frac{\partial \tilde{L}_{q_{\gamma}}}{\partial t}+\frac{\partial\left(v_{k} \tilde{L}\right)_{q_{\gamma}}}{\partial y_{k}}=-\varphi_{\gamma}, \quad \frac{\partial \tilde{L}_{T}}{\partial t}+\frac{\partial\left(v_{k} \tilde{L}\right)_{T}}{\partial y_{k}}=\frac{\varphi_{\gamma} q_{\gamma}}{T}
$$

Equations (1.1b), which describe the law of conservation of momentum, transform similarly. Equality (1.5) is written as

$$
\frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L_{u_{i}}+\delta_{i k} L\right)-U_{k} L_{u_{i}}\right]}{\partial y_{k}}=0
$$

and the law itself is finally written as

$$
\frac{\partial \tilde{L}_{v_{i}}}{\partial t}+\frac{\partial\left(v_{k} \tilde{L}_{v_{i}}+\delta_{i k} \tilde{L}\right)}{\partial y_{k}}=0
$$

We now consider one more transformation that does not change the form of the equations entering into the "simplest" system (1.1). Neither the coordinate system nor the unknown functions, except for q_{0}, change in this transformation. The function q_{0} is replaced by

$$
\begin{equation*}
Q_{0}=q_{0}-u_{1} U_{1}-u_{2} U_{2}-u_{3} U_{3}-K \quad(K=\text { const }) \tag{1.6}
\end{equation*}
$$

In this case,

$$
\begin{gathered}
L\left(q_{0}, u_{1}, u_{2}, u_{3}, q_{1}, q_{2}, \ldots, T\right) \\
=L\left(Q_{0}+u_{1} U_{1}+u_{2} U_{2}+u_{3} U_{3}+K, u_{1}, u_{2}, u_{3}, q_{1}, q_{2}, \ldots, T\right)=\tilde{L}\left(Q_{0}, u_{1}, u_{2}, u_{3}, q_{1}, q_{2}, \ldots, T\right), \\
L_{q_{0}}=\tilde{L}_{Q_{0}}, \quad L_{u_{k}}=\tilde{L}_{u_{k}}-U_{k} \tilde{L}_{Q_{0}}, \quad L_{q_{\gamma}}=\tilde{L}_{q_{\gamma}}, \quad L_{T}=\tilde{L}_{T} .
\end{gathered}
$$

Making the above change, we transform the law of conservation of mass (1.1a) into the equation

$$
\begin{equation*}
\frac{\partial \tilde{L}_{Q_{0}}}{\partial t}+\frac{\partial\left(u_{k} \tilde{L}\right)_{Q_{0}}}{\partial x_{k}}=0 \tag{1.7}
\end{equation*}
$$

The momentum equations (1.5) are rearranged into the equations

$$
\frac{\partial\left(\tilde{L}_{u_{i}}-U_{i} \tilde{L}_{Q_{0}}\right)}{\partial t}+\frac{\partial\left[u_{k}\left(L_{u_{i}}-U_{i} \tilde{L}_{Q_{0}}\right)+\delta_{i k} \tilde{L}\right]}{\partial x_{k}}=0
$$

which can be simplified if we write them in the form

$$
\frac{\partial \tilde{L}_{u_{i}}}{\partial t}+\frac{\partial\left(u_{k} \tilde{L} u_{i}+\delta_{i k} \tilde{L}\right)}{\partial x_{k}}-U_{i}\left[\frac{\partial \tilde{L}_{Q_{0}}}{\partial t}+\frac{\partial\left(u_{k} \tilde{L}\right)_{\tilde{Q}_{0}}}{\partial x_{k}}\right]=0
$$

and discard the last terms equal to zero [see (1.7)].
Equations (1.1c) and (1.1d) are not changed by replacement of q_{0} by Q_{0} and L by \tilde{L} and are written as

$$
\frac{\partial \tilde{L}_{q_{\gamma}}}{\partial t}+\frac{\partial\left(u_{k} \tilde{L}\right)_{q_{\gamma}}}{\partial x_{k}}=-\varphi_{\gamma}, \quad \frac{\partial \tilde{L}_{T}}{\partial t}+\frac{\partial\left(u_{k} \tilde{L}\right)_{T}}{\partial x_{k}}=\frac{\varphi_{\gamma} q_{\gamma}}{T}
$$

Thus, we have shown the invariance of system (1.1) under conversion to a coordinate system moving at constant velocity relative to the initial coordinate system. One can also assume that in conversion, the unknown function q_{0}, which enters into the mass conservation equation, also changes by the rule (1.6).

When converting to moving coordinates and keeping the standard designations u_{i} and q_{0} for the new variables $u_{i}-U_{i}$ and $q_{0}+u_{i} U_{i}-U_{i} U_{i} / 2$, it is necessary, as was already noted, to change the formula for the generating potential L by taking into account its dependence on the conversion parameters U_{i}. The expression specifying the generating potential will not change if $L\left(q_{0}, u_{1}, u_{2}, u_{3}, q_{1}, q_{2}, \ldots, T\right)=\Lambda\left(q_{0}+u_{i} u_{i} / 2, q_{1}, q_{2}, \ldots, T\right)$.

Below we consider in detail the constraints that should be imposed on system (1.1) in order that it be invariant under orthogonal transformations (rotations) of the coordinate system, i.e., the constraints under which it is Galilean-invariant.

We consider one of the simplest examples of the equations of mathematical physics that admit representation in the form of (1.1).

The one-dimensional equations

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}=0, \quad \frac{\partial(\rho u)}{\partial t}+\frac{\partial\left(p+\rho u^{2}\right)}{\partial x}=0, \quad \frac{\partial(\rho S)}{\partial t}+\frac{\partial(\rho S u)}{\partial x}=0 \tag{1.8}
\end{equation*}
$$

describe the motion of a gas with the energy equation of state $\mathcal{E}=\mathcal{E}(\rho, S)$, for which the pressure p and temperature T are determined by the formulas

$$
p=\rho^{2} \mathcal{E}_{\rho}(\rho, S), \quad T=\mathcal{E}_{S}(\rho, S)
$$

Equations (1.8) imply the law of conservation of energy

$$
\begin{equation*}
\frac{\partial\left(\rho\left[\mathcal{E}(\rho, S)+u^{2} / 2\right]\right)}{\partial t}+\frac{\partial\left(\rho u\left[\mathcal{E}(\rho, S)+p / \rho+u^{2} / 2\right]\right)}{\partial x}=0 \tag{1.9}
\end{equation*}
$$

To derive it, we need to multiply each of Eqs. (1.8) by the corresponding "integrating factor" $q_{0}=\mathcal{E}+p / \rho-T S-u^{2} / 2$, u, and T and sum up the products obtained. To make use of the necessary formalization, we introduce the notation $E=\rho\left[\mathcal{E}(\rho, S)+u^{2} / 2\right]$ and define L so that

$$
\begin{gathered}
L_{q_{0}}=\rho, \quad L_{u}=\rho u, \quad L_{T}=\rho S \\
E=q_{0} L_{q_{0}}+u L_{u}+T L_{T}-L=\left(\mathcal{E}+p / \rho-T S-u^{2} / 2\right) \rho+u \rho u+T \rho S-L \\
\equiv \rho \mathcal{E}+p+\rho u^{2} / 2-L=E+p-L
\end{gathered}
$$

Obviously, we should set $L=p=\rho^{2} \mathcal{E}_{\rho}(\rho, S)$. In this case,

$$
(u L)_{q_{0}}=u \rho, \quad(u L)_{u}=u L_{u}+L=\rho u^{2}+p, \quad(u L)_{T}=u L_{T}=u \rho S
$$

So, if we define q_{0}, u, T, and L by means of the parametrization $q_{0}=\mathcal{E}(\rho, S)+\rho \mathcal{E}_{\rho}(\rho, S)-S \mathcal{E}_{S}(\rho, S)-u^{2} / 2$, $u=u, T=\mathcal{E}_{S}(\rho, S)$, and $L=\rho^{2} \mathcal{E}_{\rho}(\rho, S)$, then Eqs. (1.8) and the law of conservation of energy (1.9) are written in divergent form

$$
\begin{gather*}
\frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial(u L)_{q_{0}}}{\partial x}=0, \quad \frac{\partial L_{u}}{\partial t}+\frac{\partial(u L)_{u}}{\partial x}=0 \\
\frac{\partial L_{T}}{\partial t}+\frac{\partial(u L)_{T}}{\partial x}=0, \quad \frac{\partial E}{\partial t}+\frac{\partial[u(E+L)]}{\partial x}=0 \tag{1.10}\\
\left(E=q_{0} L_{q_{0}}+u L_{u}+T L_{T}-L\right)
\end{gather*}
$$

In the example considered, when we convert to the moving spatial coordinate $y=x-U t$ with the velocity u replaced by v so that $u=v+U$, the required function

$$
q_{0}=\mathcal{E}+p / \rho-T S-u^{2} / 2
$$

should be replaced by

$$
Q_{0}=\mathcal{E}+p / \rho-T S-v^{2} / 2=q_{0}+u U-U^{2} / 2
$$

As a result, Eqs. (1.10) hold their form, but we should replace x by y, u by v, and q_{0} by Q_{0} in them.
The above example explains why in conversion to a moving coordinate system we needed to examine whether the attendant replacement of one of the required functions q_{0} by $q_{0}+u_{k} U_{k}+$ const is possible.

Systems of equations of the form of (1.1), which are basic for further constructions, describe processes in which viscous friction and diffusion are absent. If these should be taken into account, the equations should be modified.

We now present a modification of the one-dimensional version of system (1.1). The viscosity μ should be positive, and the matrix of the diffusion coefficients $D_{\gamma \beta}$ should be nonnegative definite (summation over repeated indices is performed):

$$
\begin{gather*}
\frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial(u L)_{q_{0}}}{\partial x}=0, \quad \frac{\partial L_{u}}{\partial t}+\frac{\partial\left(L+u L_{u}-\mu \partial u / \partial x\right)}{\partial x}=0 \\
\frac{\partial L_{q_{\gamma}}}{\partial t}+\frac{\partial(u L)_{q_{\gamma}}}{\partial x}=\frac{\partial}{\partial x}\left(D_{\gamma \beta} \frac{\partial q_{\gamma}}{\partial x}\right)-\varphi_{\gamma} \tag{1.11}\\
\frac{\partial L_{T}}{\partial t}+\frac{\partial(u L)_{T}}{\partial x}=\frac{1}{T}\left(\mu \frac{\partial u^{2}}{\partial x}+D_{\gamma \beta} \frac{\partial q_{\gamma}}{\partial x} \frac{\partial q_{\beta}}{\partial x}+q_{\gamma} \varphi_{\gamma}\right)
\end{gather*}
$$

The first and second equations in (1.11) describe the laws of conservation of mass and momentum, respectively, and the last equation describes the law of increase of entropy. For the solutions of system (1.11), the law of conservation of energy holds:

$$
\begin{gather*}
\frac{\partial E}{\partial t}+\frac{\partial\left[u(E+L)-\mu u \partial u / \partial x-q_{\gamma} D_{\gamma \beta} \partial q_{\beta} / \partial x\right]}{\partial x}=0 \tag{1.12}\\
E=q_{0} L_{q_{0}}+u L_{u}+q_{\gamma} L_{q_{\gamma}}+T L_{T}-L
\end{gather*}
$$

It is easy to check that as for Eqs. (1.1) and (1.3) considered above, the form of Eqs. (1.11) and (1.12) is retained in conversion to a new coordinate system moving at constant velocity relative to the initial coordinate system.

We give another example [more general than (1.11) and (1.12)] of one-dimensional conservation laws for multitemperature hydrodynamics confining ourselves to the variant with two temperatures. We chose this example after familiarizing ourselves with studies of [24-26].

Let the internal energy be the sum of the partial energies $\mathcal{E}^{(j)}\left(\rho, S_{j}\right)$, where S_{j} is the partial entropy $(j=1,2)$. In this case we should set

$$
L=\sum_{j} \rho^{2} \varepsilon_{S}^{(j)}\left(\rho, S_{j}\right)
$$

and take

$$
q_{0}=\sum_{j}\left[\mathcal{E}^{(j)}\left(\rho, S_{j}\right)+\rho \mathcal{E}_{\rho}^{(j)}\left(\rho, S_{j}\right)\right]-S_{j} \mathcal{E}_{S_{j}}\left(\rho, S_{j}\right)-\frac{u^{2}}{2}, \quad T_{j}=\mathcal{E}_{S_{j}}^{(j)}
$$

as the required functions. We have

$$
\begin{aligned}
L_{q_{0}}=\rho, \quad L_{u} & =\rho u, \quad L_{T_{j}}=\rho S_{j} \\
q_{0} L_{q_{0}}+u L_{u}+\sum_{j} T_{j} L_{T_{j}}-L & =\rho\left(\sum_{j} \mathcal{E}^{(j)}\left(\rho, S_{j}\right)+\frac{u^{2}}{2}\right) \equiv E
\end{aligned}
$$

By analogy with (1.11) and (1.12), the equations for one-dimensional viscous heat-conducting hydrodynamics can be written as

$$
\begin{gathered}
\frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial\left(u L_{q_{0}}\right)}{\partial x}=0, \quad \frac{\partial L_{u}}{\partial t}+\frac{\partial\left(L+u L_{u}-\mu \partial u / \partial x\right)}{\partial x}=0 \\
\frac{\partial L_{T_{1}}}{\partial t}+\frac{\partial\left(u L_{T_{1}}-\left(K_{1} / T_{1}\right) \partial T_{1} / \partial x\right)}{\partial x}=\frac{K_{1}}{T_{1}^{2}}\left(\frac{\partial T_{1}}{\partial x}\right)^{2}+a \frac{T_{2}-T_{1}}{T_{1}}+\frac{\mu}{T_{1}}\left(\frac{\partial u}{\partial x}\right)^{2} \\
\frac{\partial L_{T_{2}}}{\partial t}+\frac{\partial\left(u L_{T_{2}}-\left(K_{2} / T_{2}\right) \partial T_{2} / \partial x\right)}{\partial x}=\frac{K_{2}}{T_{2}^{2}}\left(\frac{\partial T_{2}}{\partial x}\right)^{2}+a \frac{T_{1}-T_{2}}{T_{2}} \\
\frac{\partial E}{\partial t}+\frac{\partial\left[u(E+L)-K_{1} \partial T_{1} / \partial x-K_{2} \partial T_{2} / \partial x-\mu u \partial u / \partial x\right]}{\partial x}=0
\end{gathered}
$$

Here the last equality (law of conservation of energy) is obtained as a linear combination of all preceding equations taken with the coefficients q_{0}, u, T_{1}, and T_{2}, respectively. Additional terms $\left(a / T_{1}\right)\left(T_{2}-T_{1}\right)$ and $\left(a / T_{2}\right)\left(T_{1}-T_{2}\right)$ with positive coefficient a are included in the right sides of the third and fourth equations (entropy equations). These terms model the equalization of the temperatures T_{1} and T_{2}. The multipliers $1 / T_{1}$ and $1 / T_{2}$ in these terms are chosen so that inclusion of these terms does not lead to violation of the law of conservation of energy. It is essential that summation of the entropy equations yields the equality

$$
\begin{gathered}
\frac{\partial\left[\rho\left(S_{1}+S_{2}\right)\right]}{\partial t}+\frac{\partial\left[\rho u\left(S_{1}+S_{2}\right)-\left(K_{1} / T_{1}\right) \partial T_{1} / \partial x-\left(K_{2} / T_{2}\right) \partial T_{2} / \partial x\right]}{\partial x} \\
\quad=\frac{K_{1}}{T_{1}^{2}}\left(\frac{\partial T_{1}}{\partial x}\right)^{2}+\frac{K_{2}}{T_{2}^{2}}\left(\frac{\partial T_{2}}{\partial x}\right)^{2}+\frac{a}{T_{1} T_{2}}\left(T_{2}-T_{1}\right)^{2}+\frac{\mu}{T_{1}}\left(\frac{\partial u}{\partial x}\right)^{2}
\end{gathered}
$$

which can be interpreted as the law of increase of total entropy. This increase is a consequence of the presence of the viscous stresses $\mu \partial u / \partial x$, the gradients of the temperatures T_{1} and T_{2}, and the relaxation process, which yields
a positive contribution if $T_{2} \neq T_{1}$. Obviously, the construction described here can be automatically extended to a larger number of temperatures T_{j}.

Concluding the analysis of the simplest examples of account of dissipative processes that do not contradict the conservation laws for mass, momentum and energy and the law of increase of entropy, we note that the classification of the dissipative terms admitted by the Galilean invariance of equations is an important problem, which requires further investigation.
2. Invariance under Rotations and Galilean Transformations. We establish constraints on the "simplest" systems of equations (see Sec. 1) under which they describe processes independent of various rotations of the coordinate systems. Each such rotation is specified by an orthogonal real matrix $\mathcal{P} \quad\left(\mathcal{P}^{\mathfrak{t}} \mathcal{P}=I_{3}\right)$ of order 3×3 with positive determinant $\operatorname{det} \mathcal{P}=+1$. The collection of these matrices constitutes the group $S O(3)$.

The transformation $\mathcal{P} \in S O(3)$ converts the coordinates x_{1}, x_{2}, and x_{3} of a point x into the new coordinates y_{1}, y_{2}, and y_{3} by the formula

$$
\boldsymbol{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\mathcal{P}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathcal{P} \boldsymbol{x}
$$

The old coordinates can be calculated in terms of the new coordinates using the inverse matrix $\mathcal{P}^{-1}=\mathcal{P}^{\mathrm{t}}$:

$$
\boldsymbol{x}=\mathcal{P}^{-1} \boldsymbol{y}=\mathcal{P}^{\mathrm{t}} \boldsymbol{y}
$$

After the transformation \mathcal{P}, the velocity field

$$
\boldsymbol{u}(\boldsymbol{x}, t)=\left(\begin{array}{l}
u_{1}\left(x_{1}, x_{2}, x_{3}, t\right) \\
u_{2}\left(x_{1}, x_{2}, x_{3}, t\right) \\
u_{3}\left(x_{1}, x_{2}, x_{3}, t\right)
\end{array}\right)
$$

is given by the vector-function $\boldsymbol{v}(\boldsymbol{y}, t)$ calculated in terms of $\boldsymbol{u}(\boldsymbol{x}, t)$ by the formula

$$
\boldsymbol{v}(\boldsymbol{y}, t)=\mathcal{P} \boldsymbol{u}\left(\mathcal{P}^{-1} \boldsymbol{y}, t\right) .
$$

We now unite the unknown functions that describe the state of the medium into a vector-function $\boldsymbol{q}=\left(q_{1}, q_{2}, \ldots\right)^{\mathrm{t}}$, which should also be transformed by rotations of the coordinate system. Each coordinate transformation described by the matrix \mathcal{P} should correspond to an orthogonal matrix $\Omega=\Omega(\mathcal{P})$, which converts a vector $\boldsymbol{q}=\boldsymbol{q}(\boldsymbol{x}, t)$ into $\boldsymbol{p}=\boldsymbol{p}(\boldsymbol{y}, t)=\Omega \boldsymbol{q}\left(\mathcal{P}^{-1} \boldsymbol{y}, t\right)$. In successive transformations $\boldsymbol{y}=\mathcal{P}_{1} \boldsymbol{x}$ and $\boldsymbol{z}=\mathcal{P}_{2} \boldsymbol{y}=\mathcal{P}_{2} \mathcal{P}_{1} \boldsymbol{x}$, the unknown vectors are transformed successively $(\boldsymbol{q} \rightarrow \boldsymbol{p} \rightarrow \boldsymbol{r})$ using the corresponding orthogonal matrices Ω_{1} and Ω_{2} :

$$
\begin{gathered}
\boldsymbol{r}=\boldsymbol{r}(\boldsymbol{z}, t)=\Omega_{2} \boldsymbol{p}\left(\mathcal{P}_{2}^{-1} \boldsymbol{z}, t\right), \\
\boldsymbol{p}\left(\mathcal{P}_{2}^{-1} \boldsymbol{z}, t\right)=\boldsymbol{p}(\boldsymbol{y}, t)=\Omega_{1} \boldsymbol{q}\left(\mathcal{P}_{1}^{-1} \boldsymbol{y}, t\right)=\Omega_{1} \boldsymbol{q}\left(\mathcal{P}_{1}^{-1} \mathcal{P}_{2}^{-1} \boldsymbol{z}, t\right), \\
\boldsymbol{r}=\Omega_{2} \Omega_{1} \boldsymbol{q}\left(\mathcal{P}_{1}^{-1} \mathcal{P}_{2}^{-1} \boldsymbol{z}, t\right) .
\end{gathered}
$$

The correspondence between transformations \mathcal{P} of the spatial coordinates and the corresponding transformations Ω of the unknown vector-function $\boldsymbol{q}(\boldsymbol{x}, t)$ should be a representation of the group $S O(3)$ by orthogonal matrices.

The generating potential $L=L(\boldsymbol{u}, \boldsymbol{q}, T)$ will be assumed to be invariant, so that

$$
\begin{equation*}
L(\boldsymbol{u}, \boldsymbol{q}, T)=L(\mathcal{P} \boldsymbol{u}, \Omega \boldsymbol{q}, T)=L(\boldsymbol{v}, \boldsymbol{p}, T) \tag{2.1}
\end{equation*}
$$

When investigating one or another concrete system, we shall assume that the finite-dimensional orthogonal representation $\Omega(\mathcal{P})$ which keeps the generating potential invariant for every $\mathcal{P} \in S O(3)$ is known.

In quantum-mechanical problems of mathematical physics, not only orthogonal but also unitary representations can be used. In this case, the unknowns q_{j} should be assumed to be complex. In Sec. 3 we shall consider possible expedients that allow us to use the analysis of invariance of equations in the case of such generalizations as well.

Whatever the function $f(\boldsymbol{y}, t)$ may be:

$$
f(\boldsymbol{y}, t)=f\left(y_{1}, y_{2}, y_{3}, t\right)=f\left(\mathcal{P}_{\boldsymbol{x}}, t\right)=f\left(\mathcal{P}_{1 j} x_{j}, \mathcal{P}_{2 j} x_{j}, \mathcal{P}_{3 j} x_{j}, t\right),
$$

the following equalities are valid by virtue of the orthogonality of the transformation \mathcal{P} :

$$
\begin{equation*}
f_{x_{j}}=f_{y_{i}} \mathcal{P}_{i j}, \quad v_{i}=\mathcal{P}_{i j} u_{j}, \quad u_{j}=\mathcal{P}_{j i} v_{i}, \quad u_{i} f_{x_{i}} \equiv u_{j} f_{x_{j}}=v_{i} f_{y_{i}} \mathcal{P}_{j i} \mathcal{P}_{i j}=v_{i} f_{y_{i}} \tag{2.2}
\end{equation*}
$$

Moreover, scalars, in particular, the temperature T, do not change in this transformation.
The equality (for $d T=0$)

$$
d L=L_{u_{i}} d u_{i}+L_{q_{\gamma}} d q_{\gamma}=L_{v_{j}} \mathcal{P}_{i j} d u_{i}+L_{p \beta} \Omega_{\beta \alpha} d q_{\alpha}
$$

and the orthogonality of \mathcal{P} and Ω imply that

$$
\begin{array}{cl}
L_{u_{i}}=\mathcal{P}_{j i} L_{v_{j}}, & L_{u}=\mathcal{P}^{\mathrm{t}} L_{v}, \tag{2.3}
\end{array} L_{v}=\mathcal{P} L_{u}, ~ 子 L_{q_{\alpha}}=\Omega_{p_{\beta}}, \quad L_{q}=\Omega^{\mathrm{t}} L_{p}, \quad L_{p}=\Omega L_{q} .
$$

For every scalar function $g(\boldsymbol{y}, t)=g\left(y_{1}, y_{2}, y_{3}, t\right)=g\left(\mathcal{P}_{1 j} x_{j}, \mathcal{P}_{2 j} x_{j}, \mathcal{P}_{3 j} x_{j}, t\right)$, its gradients in the coordinate systems \boldsymbol{x} and \boldsymbol{y} are linked by the equality

$$
\frac{\partial g}{\partial \boldsymbol{y}}=\left(\begin{array}{c}
g_{y_{1}} \tag{2.4}\\
g_{y_{2}} \\
g_{y_{3}}
\end{array}\right)=\mathcal{P}\left(\begin{array}{c}
g_{x_{1}} \\
g_{x_{2}} \\
g_{x_{3}}
\end{array}\right)=\mathcal{P} \frac{\partial g}{\partial \boldsymbol{x}}
$$

We consider the system of equations specified by the invariant [see (2.1)] potential L :

$$
\begin{gather*}
\frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial\left(u_{k} L_{q_{0}}\right)}{\partial x_{k}}=0, \quad \frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left(u_{k} L_{u_{i}}\right)}{\partial x_{k}}+\frac{\partial L}{\partial x_{i}}=0 \tag{2.5}\\
\frac{\partial L_{q_{\gamma}}}{\partial t}+\frac{\partial\left(u_{k} L_{q_{\gamma}}\right)}{\partial x_{k}}=-\varphi_{\gamma}, \quad \frac{\partial L_{T}}{\partial t}+\frac{\partial\left(u_{k} L_{T}\right)}{\partial x_{k}}=\frac{q_{\gamma} \varphi_{\gamma}}{T}
\end{gather*}
$$

We assume that in rotations of the coordinate system, the vector \boldsymbol{q} with components q_{γ} is transformed by a certain representation of the rotation group. The scalar quantities q_{0} and T, which do not change in rotations, can be included in the number of the components of the vector \boldsymbol{q}, assuming that $\varphi_{0}=0$ and $\varphi_{T}=q_{\gamma} \varphi_{\gamma} / T$.

It follows from (2.2)-(2.4) that the orthogonal transformations \mathcal{P} and Ω

$$
\begin{gathered}
\boldsymbol{y}=\mathcal{P} \boldsymbol{x}, \quad \boldsymbol{v}(\boldsymbol{y}, t)=\mathcal{P} \boldsymbol{u}\left(\mathcal{P}^{-1} \boldsymbol{y}, t\right), \quad \boldsymbol{p}(\boldsymbol{y}, t)=\Omega \boldsymbol{q}\left(\mathcal{P}^{-1} \boldsymbol{y}, t\right) \\
\boldsymbol{p}_{0}(\boldsymbol{y}, t)=\boldsymbol{q}_{0}\left(\mathcal{P}^{-1} \boldsymbol{y}, t\right), \quad \hat{T}=T\left(\mathcal{P}^{-1} \boldsymbol{y}, t\right), \quad \hat{\varphi}_{\gamma}(\boldsymbol{y}, t)=\varphi_{\gamma}\left(\mathcal{P}^{-1} \boldsymbol{y}, t\right)
\end{gathered}
$$

convert system (2.5) into a system of equations that differs from (2.5) only in notation:

$$
\begin{aligned}
& \frac{\partial L_{p_{0}}}{\partial t}+\frac{\partial\left(v_{k} L_{p_{0}}\right)}{\partial x_{k}}=0, \quad \frac{\partial L_{v_{i}}}{\partial t}+\frac{\partial\left(v_{k} L_{v_{i}}\right)}{\partial x_{k}}+\frac{\partial L}{\partial x_{i}}=0 \\
& \frac{\partial L_{p_{\gamma}}}{\partial t}+\frac{\partial\left(v_{k} L_{p_{\gamma}}\right)}{\partial x_{k}}=-\hat{\varphi}_{\gamma}, \quad \frac{\partial L_{\hat{T}}}{\partial t}+\frac{\partial\left(v_{k} L_{\hat{T}}\right)}{\partial x_{k}}=\frac{p_{\gamma} \hat{\varphi}_{\gamma}}{\hat{T}}
\end{aligned}
$$

This suggests that system (2.5) is invariant under rotations under the above assumptions of invariance of the generating thermodynamic potential L, which depends on the unknown functions - vectors that are rotationally transformed by irreducible representations.

System (2.5) coincides with the "simplest" system (1.1) introduced in Sec. 1 and can also be supplemented with the equality compatible with it:

$$
\begin{equation*}
\frac{\partial E}{\partial t}+\frac{\partial\left[u_{k}(E+L)\right]}{\partial x_{k}}=0, \quad E=q_{0} L_{q_{0}}+u_{i} L_{u_{i}}+q_{\gamma} L_{q_{\gamma}}+T L_{T}-L \tag{2.6}
\end{equation*}
$$

It was shown in Sec. 1 that the system of equations considered is invariant under conversion to a coordinate system moving at constant velocity if the generating potential is given in the form $L=\Lambda\left(q_{0}+u_{i} u_{i} / 2, q_{1}, q_{2}, \ldots, T\right)$.

Thus, by virtue of the invariance of the equations under rotations of the coordinate systems (see Sec. 1), we can assert that system $(1.1),(1.3)$ or system $(2.5),(2.6)$, which coincides with it, is invariant under arbitrary Galilean transformations. Obviously, it is also invariant under a parallel translation of the coordinate system involving shift of its origin.
3. Concrete Definition of the Required Functions in the Systems under Investigation. In Secs. 1 and 2, we have described the structure of a Galilean-invariant special system of partial differential equations which contains conservation laws for mass, momentum, and energy and the law of conservation (or increase) of entropy. In this system, the unknown functions are the velocity field $\boldsymbol{u} \equiv\left(u_{1}, u_{2}, u_{3}\right)$ and the field of a certain, as a rule, multicomponent vector \boldsymbol{q} that is transformed in rotations by an orthogonal representation of the rotation group or its universal covering group $S U(2)$ (multiplicative group of quaternions).

We change the numbering of the independent variables x_{1}, x_{2}, and x_{3} and the velocity components u_{1}, u_{2}, and u_{3}. For further considerations, it is more convenient to use the notation x_{-1}, x_{0}, and x_{1} and u_{-1}, u_{0}, and u_{1}, respectively.

We assume that the vector \boldsymbol{q} is compound, and its parts are "vector components" - the vectors $\boldsymbol{q}^{\left(A_{1}\right)}$, $\boldsymbol{q}^{\left(A_{2}\right)}, \ldots$, each of which is transformed by an irreducible orthogonal representation of the corresponding weight A_{j}. Among the vector components there may be more than one component with the same weight A.
If the weight A is integer, the vector $\boldsymbol{q}^{(A)}$ should have odd number $(2 A+1)$ of components. For these components - real numbers $q_{a}^{(A)}$ - we use integer numbering: $a=-A,-A+1, \ldots,-1,0,1, \ldots, A-1$, and A. In this case, the zero weight $A=0$ corresponds to one scalar component $q_{0}^{(0)}$, which does not change in rotations.

In the case of a half-integer weight A, it is common to use unitary representations in a complex vector space of even dimension $2 A+1$. In this space, each vector $\boldsymbol{q}^{(A)}$ has $2 A+1$ complex components $q_{a}^{(A)}+i r_{a}^{(A)}(a=-A$, $-A+1, \ldots,-1 / 2,1 / 2, \ldots, A-1$, and $A)$, and the representation itself induces in natural way an orthogonal representation in the space of $2(2 A+1)$-dimensional real vectors $\boldsymbol{q}^{(A)}$ with the components q_{-A}, q_{-A+1}, \ldots, and q_{A} and r_{-A}, r_{-A+1}, \ldots, and r_{A}. In the examples below, we use exactly this realization of orthogonal representations of the group $S U(2)$ or the rotation group $S O(3)$. In the case of representations of half-integer weight, each rotation from $S O(3)$ through an angle of 2π about a certain axis corresponds to a transformation of the vector $\boldsymbol{q}^{(A)}$ into the vector $-\boldsymbol{q}^{(A)}$, whose all components $-q_{a}^{(A)}$ and $-r_{a}^{(A)}$ are opposite in signs to the components $q_{a}^{(A)}$ and $r_{a}^{(A)}$ of the initial vector $\boldsymbol{q}^{(A)}$. For example, the vector variable $\boldsymbol{q}^{(1 / 2)}$, which is transformed by an orthogonal (two-valued) representation of weight $1 / 2$, has four components $q_{-1 / 2}, r_{-1 / 2}, q_{1 / 2}$, and $r_{1 / 2}$. Each rotation $g \in S O(3)$ given by the matrix $g=g_{0}\left(\psi_{0}\right) g_{-1}\left(\theta_{-1}\right) g_{0}\left(\varphi_{0}\right)$ represented as the product of rotations around the coordinate axes indexed "zero," "minus one," and again "zero" corresponds to the orthogonal transformation of the vector $\boldsymbol{q}^{(1 / 2)}$ described by the matrix

$$
\Omega^{1 / 2}\left(\psi_{0}, \theta_{-1}, \varphi_{0}\right)=\left(\begin{array}{ccccc}
\cos \frac{\theta_{-1}}{2} \cos \frac{\varphi_{0}+\psi_{0}}{2} & \sin \frac{\theta_{-1}}{2} \cos \frac{\varphi_{0}-\psi_{0}}{2} & \cos \frac{\theta_{-1}}{2} \sin \frac{\varphi_{0}+\psi_{0}}{2} & -\sin \frac{\theta_{-1}}{2} \sin \frac{\varphi_{0}-\psi_{0}}{2} \\
-\sin \frac{\theta_{-1}}{2} \cos \frac{\varphi_{0}-\psi_{0}}{2} & \cos \frac{\theta_{-1}}{2} \cos \frac{\varphi_{0}+\psi_{0}}{2} & -\sin \frac{\theta_{-1}}{2} \sin \frac{\varphi_{0}-\psi_{0}}{2} & -\cos \frac{\theta_{-1}}{2} \sin \frac{\varphi_{0}+\psi_{0}}{2} \\
-\cos \frac{\theta_{-1}}{2} \sin \frac{\varphi_{0}+\psi_{0}}{2} & \sin \frac{\theta_{-1}}{2} \sin \frac{\varphi_{0}-\psi_{0}}{2} & \cos \frac{\theta_{-1}}{2} \cos \frac{\varphi_{0}+\psi_{0}}{2} & \sin \frac{\theta_{-1}}{2} \cos \frac{\varphi_{0}-\psi_{0}}{2} \\
\sin \frac{\theta_{-1}}{2} \sin \frac{\varphi_{0}-\psi_{0}}{2} & \cos \frac{\theta_{-1}}{2} \sin \frac{\varphi_{0}+\psi_{0}}{2} & -\sin \frac{\theta_{-1}}{2} \cos \frac{\varphi_{0}-\psi_{0}}{2} & \cos \frac{\theta_{-1}}{2} \cos \frac{\varphi_{0}+\psi_{0}}{2}
\end{array}\right)
$$

Each rotation $g \in S O(3), g=g_{0}\left(\psi_{0}\right) g_{-1}\left(\theta_{-1}\right) g_{0}\left(\varphi_{0}\right)$ is a rotation through angle $\omega=\psi_{0}$ around the axis into which the x_{0} axis is converted by successive rotations $g_{0}\left(\varphi_{0}\right)$ and $g_{-1}\left(\theta_{-1}\right)$. It should be noted that rotation through an angle $\psi_{0}+2 \pi$ around the same axis, i.e., rotation with the set of parameters $\psi_{0}+2 \pi, \theta_{-1}$, and φ_{0}, corresponds to $\Omega^{1 / 2}\left(\psi_{0}+2 \pi, \theta_{-1}, \varphi_{0}\right)=-\Omega^{1 / 2}\left(\psi_{0}, \theta_{-1}, \varphi_{0}\right)$.

The above example of an orthogonal representation is obtained from a 2 D unitary representation, in which the 2D complex vector

$$
\boldsymbol{q}^{(1 / 2)}=\left[\begin{array}{c}
q_{-1 / 2}+i r_{-1 / 2} \\
q_{1 / 2}+i r_{1 / 2}
\end{array}\right]
$$

is transformed using unitary matrices of the form

$$
\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right), \quad \alpha=\mathrm{e}^{-i\left(\varphi_{0}+\psi_{0}\right) / 2} \cos \frac{\theta_{-1}}{2}, \quad \beta=\mathrm{e}^{i\left(\varphi_{0}-\psi_{0}\right) / 2} \sin \frac{\theta_{-1}}{2} .
$$

As an example of a Galilean-invariant system in which part of the unknowns, namely, T, q_{0}, u_{-1}, u_{0}, and u_{1} are transformed by rotations according to one-valued representations (of weights 0 and 1), and the other part
is transformed by a two-valued representation (of weight $1 / 2$), we consider the equations generated by a certain potential

$$
L=L\left(q_{0} ; u_{-1}, u_{0}, u_{1} ; q_{-1 / 2}, r_{-1 / 2}, q_{1 / 2}, r_{1 / 2}, T\right)=\Lambda\left(q_{0}+u_{i} u_{i} / 2, q_{-1 / 2}, r_{-1 / 2}, q_{1 / 2}, r_{1 / 2}, T\right)
$$

which is invariant under rotations:

$$
\begin{aligned}
& \frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial\left(u_{k} L_{q_{0}}\right)}{\partial x_{k}}=0, \quad \frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{u_{i}}}{\partial x_{k}}=0, \\
& \frac{\partial L_{q_{-1 / 2}}}{\partial t}+\frac{\partial\left(u_{k} L_{q_{-1 / 2}}\right)}{\partial x_{k}}=-r_{1 / 2}, \quad \frac{\partial L_{q_{1 / 2}}}{\partial t}+\frac{\partial\left(u_{k} L_{q_{1 / 2}}\right)}{\partial x_{k}}=r_{-1 / 2}, \\
& \frac{\partial L_{r_{-1 / 2}}}{\partial t}+\frac{\partial\left(u_{k} L_{r_{-1 / 2}}\right)}{\partial x_{k}}=-q_{1 / 2}, \quad \frac{\partial L_{r_{1 / 2}}}{\partial t}+\frac{\partial\left(u_{k} L_{r_{1 / 2}}\right)}{\partial x_{k}}=q_{-1 / 2}, \\
& \frac{\partial L_{T}}{\partial t}+\frac{\partial\left(u_{k} L_{T}\right)}{\partial x_{k}}=0, \quad \frac{\partial E}{\partial t}+\frac{\partial\left[u_{k}(E+L)\right]}{\partial x_{k}}=0, \\
& E=u_{k} L_{u_{k}}+q_{j} L_{q_{j}}+r_{j} L_{r_{j}}+T L_{T}-L .
\end{aligned}
$$

The results obtained in Secs. 1 and 2 show that the system considered is compatible, although overdetermined since it has 10 equations for 9 unknowns functions. The zero right side in the entropy equation was obtained by a special choice of the right sides.

The short notation $\boldsymbol{q}^{(A)}$ is used for a vector with components $q_{a}^{(A)}$ that is transformed by an irreducible representation of weight A. Sometimes, it is more convenient to deal with vector-functions represented by divalent tensors $q_{k \alpha}^{(1, A)}$ with the second subscript a Greek letter and the first subscript a Roman letter. Each rotation $\mathcal{P}^{(1)}$ of the coordinate system in the representation of weight A corresponds to an orthogonal transformation (representation) $\Omega^{(A)}$ given by a real matrix which has order $(2 A+1) \times(2 A+1)$ for integer A and order $[2(2 A+1)] \times[2(2 A+1)]$ for half-integer A. Obviously, the Greek subscript α runs through the corresponding number of various values, whereas the Roman subscript k takes only three values (for the chosen numbering, $k=-1,0$, and 1).

The tensor $q_{k \alpha}^{(1, A)}$ is transformed by the rule $\left[q_{k \alpha}^{(1, A)}\right]^{\prime}=\Omega_{\alpha \beta}^{(A)} \mathcal{P}_{k j}^{(1)} q_{j \beta}^{(1, A)}$. The representation generated by such transformations is reducible if $A \neq 0$ and, as is known, it is decomposed into irreducible representations.

As an example, we give a compatible Galilean-invariant overdetermined system, where q_{0} is a scalar, u_{j} are the velocity components, $r_{j \alpha}$ are the components of a tensor $r^{(1,1)}$, and T is the temperature:

$$
\begin{gathered}
\frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial\left(u_{k} L_{q_{0}}\right)}{\partial x_{k}}=0, \quad \frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{u_{i}}}{\partial x_{k}}=0 \\
\frac{\partial L_{r_{i \alpha}}}{\partial t}+\frac{\partial\left(u_{k} L_{r_{k \alpha}}\right)}{\partial x_{k}}=-\varphi_{i \alpha}, \quad \frac{\partial L_{T}}{\partial t}+\frac{\partial\left(u_{k} L_{T}\right)}{\partial x_{k}}=\frac{r_{j \alpha} \varphi_{j \alpha}}{T} \\
\frac{\partial E}{\partial t}+\frac{\partial\left[u_{k}(E+L)\right]}{\partial x_{k}}=0, \quad E=q_{0} L_{q_{0}}+u_{i} L_{u_{i}}+r_{j \alpha} L_{r_{j \alpha}}+T L_{T}-L .
\end{gathered}
$$

The potential L, which generates this system, is an invariant function of all the unknowns $q_{0}, u_{i}, r_{j \alpha}$, and T. The right sides $-\varphi_{i \alpha}$ should be determined so as not to violate the invariance. The equations with zero right sides can be regarded as exact conservation laws for mass, momentum, and energy.

In conclusion we give matrices $\Omega^{(N)}\left(\psi_{0}, \theta_{-1}, \varphi_{0}\right)=\Omega^{(N)}\left(0,0, \psi_{0}\right) \Omega^{(N)}\left(0, \theta_{-1}, 0\right) \Omega^{(N)}\left(0,0, \varphi_{0}\right)$, which in the standard canonical basis give the representation (of integer weight N) of the rotations $\mathcal{P}\left(\psi_{0}, \theta_{-1}, \varphi_{0}\right)$ specified by Euler's angles φ_{0}, θ_{-1}, and ψ_{0}. The subscripts correspond to the numbers of the coordinate axes around which the rotation is performed. It should be noted that $\mathcal{P}\left(\psi_{0}, \theta_{-1}, \varphi_{0}\right)=\Omega^{(1)}\left(\psi_{0}, \theta_{-1}, \varphi_{0}\right)$.

The matrix elements corresponding to the rotation φ_{0} are calculated from the formulas

$$
\Omega_{m, m}^{(N)}\left(\varphi_{0}, 0,0\right)=\Omega_{m, m}^{(N)}\left(0,0, \varphi_{0}\right)=\cos m \varphi_{0}, \quad \Omega_{-m, m}^{(N)}\left(\varphi_{0}, 0,0\right)=\Omega_{-m, m}^{(N)}\left(0,0, \varphi_{0}\right)=\sin m \varphi_{0}
$$

if $N \geqslant|m| \geqslant 1$ and $\Omega_{0,0}^{(N)}\left(0,0, \varphi_{0}\right)=1$ or $\Omega_{k, m}^{(N)}\left(0,0, \varphi_{0}\right)=0$ if $|k| \neq|m|$.

It is convenient to express the elements $\Omega_{k m}^{(N)}\left(0, \theta_{-1}, 0\right)=(-1)^{k+m} \Omega_{m k}^{(N)}\left(0, \theta_{-1}, 0\right)$ in terms of $\mu=\cos \theta_{-1}$ $(1 \leqslant k$ and $m \leqslant N)$:

$$
\begin{gathered}
\Omega_{ \pm k, \pm m}^{(N)}\left(0, \theta_{-1}, 0\right)=\frac{(-1)^{N+m}}{2^{N}\left(1-\mu^{2}\right)^{(k+m) / 2}} \sqrt{\frac{(N+m)!}{(N-k)!(N+k)!(N-m)!}} \\
\times\left\{(1-\mu)^{k} \frac{d^{N-m}}{d \mu^{N-m}}\left[(1+\mu)^{N+k}(1-\mu)^{N-k}\right] \pm(-1)^{k}(1+\mu)^{k} \frac{d^{N-m}}{d \mu^{N-m}}\left[(1+\mu)^{N-k}(1-\mu)^{N+k}\right]\right\}, \\
\Omega_{k, 0}^{(N)}\left(0, \theta_{-1}, 0\right)=(-1)^{k} \Omega_{0, k}^{(N)}\left(0, \theta_{-1}, 0\right)=\frac{(-1)^{N+1}}{N!2^{N}} \sqrt{\frac{2(N+k)!}{(N-k)!}} \frac{1}{\left(1-\mu^{2}\right)^{k / 2}} \frac{d^{N-k}}{d \mu^{N-k}}\left(1-\mu^{2}\right)^{N}, \\
\Omega_{0,0}^{(N)}\left(0, \theta_{-1}, 0\right)=\frac{(-1)^{N}}{N!2^{N}} \frac{d^{N}}{d \mu^{N}}\left(1-\mu^{2}\right)^{N}, \\
\Omega_{-k, m}^{(N)}\left(0, \theta_{-1}, 0\right)=\Omega_{k,-m}^{(N)}\left(0, \theta_{-1}, 0\right)=\Omega_{-k, 0}^{(N)}\left(0, \theta_{-1}, 0\right)=\Omega_{0,-m}^{(N)}\left(0, \theta_{-1}, 0\right)=0 .
\end{gathered}
$$

Conclusions. This paper reports results of investigation of the hyperbolicity, Galilean invariance, and thermodynamical consistency of the simplest conservation laws encountered in mathematical physics.

A special choice of unknown vector-functions that are transformed by irreducible orthogonal representations of the rotation group is also proposed. The use of these vector-functions as variables will simplify the study (which was begun in $[15,16]$) of the relationship between the theory of group representations and the systematization of the differential equations describing evolutionary processes in various continuous media.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 01-01-00766).

REFERENCES

1. S. K. Godunov, "On the concept of a generalized solution," Dokl. Akad. Nauk SSSR, 134, No. 6, 1279-1282 (1960).
2. S. K. Godunov, "An interesting class of quasilinear systems," Dokl. Akad. Nauk SSSR, 139, No. 3, 521-523 (1961).
3. A. G. Kulikovskii, "On the structure of shock waves in magnetohydrodynamics with arbitrary dissipation law,"

Prikl. Mat. Mekh., 26, No. 2, 273-279 (1962).
4. K. O. Friedrichs and P. D. Lax, "Systems of conservation equations with a convex extension," in: Proc. Nat. Acad. Sci. USA, 68, No. 8, 1686-1688 (1971).
5. S. K. Godunov, "Symmetric form of equations in magnetohydrodynamics," in: Numerical Methods of Continuum Mechanics [in Russian], Vol. 3, No. 1, Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR (1972), pp. 26-34.
6. S. K. Godunov and E. I. Romensky, "Unsteady equations of nonlinear elasticity in Eulerian coordinates," Prikl. Mekh. Tekh. Fiz., No. 6, 124-144 (1972).
7. K. O. Friedrichs, "On the laws of relativistic electro-magneto-fluid dynamics," Comm. Pure Appl. Math., 27, No. 6, 749-808 (1974).
8. K. O. Friedrichs, "Conservation equations and the laws of motion in classical physics," Comm. Pure Appl. Math., 31, No. 1, 123-131 (1978).
9. S. K. Godunov, Elements of Continuum Mechanics [in Russian], Nauka, Moscow (1978).
10. G. Boillat, "Symétrisation des systèms d'équations aux d'érivées partielles avec densité d'énergie convexe et contraintes," C. R. Acad. Sci., Paris, Sér. 1, Math., 295, No. 9, 551-554 (1982).
11. S. K. Godunov, "Lois de conservation et intégrales d'énergie des équations hyperboliques," in: Nonlinear Hyperbolic Problems (Lecture Notes in Math., Vol. 1270), Springer-Verlag, Berlin (1986), pp. 135-149.
12. S. K. Godunov and E. I. Romensky, "Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media," in: Computational Fluid Dynamics Review, John Wiley and Sons, Chichester-New York (1995), pp. 19-30.
13. M. Sever, "Estimation of the time rate of entropy dissipation for systems of conservation laws," J. Differential Equations, 130, 127-141 (1996).
14. S. K. Godunov and E. I. Romensky, Elements of Continuum Mechanics and Conservation Laws [in Russian], Nauchnaya Kniga, Novosibirsk (1998).
15. S. K. Godunov, T. Yu. Mikhailova, and E. I. Romensky, "Systems of thermodynamically coordinated laws of conservation invariant under rotations," Sib. Mat. Zh., 37, No. 4, 790-806 (1996).
16. T. Yu. Mikhailova, "Thermodynamically consistent conservation laws with unknowns of arbitrary weight," Sib. Mat. Zh., 38, No. 3, 615-626 (1997).
17. I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation Group and the Lorentz Group and Applications [in Russian], Fizmatgiz, Moscow (1958).
18. M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wesley, Reading, Massachusetts (1964).
19. G. Ya. Lyubarskii, Group Theory and Its Application in Physics [in Russian], Gostekhteoretizdat, Moscow (1957).
20. S. K. Godunov and T. Yu. Mikhailova, Representations of the Rotation Group, and Spherical Functions [in Russian], Nauchnaya Kniga, Novosibirsk (1998).
21. L. A. Shelepin, "Calculus of the Clebsch-Gordan coefficients and its physical applications," Tr. Fiz. Inst. Akad. Nauk SSSR, 70, 3-119 (1973).
22. Yu. B. Rumer, Spinor Analysis [in Russian], ONTI, Moscow-Leningrad (1936).
23. V. M. Gordienko, "Matrix elements of real representations of the groups $O(3)$ and $S O(3)$," Sib. Mat. Zh. (in press).
24. V. S. Imshennik and N. A. Bobrova, The Dynamics of Collisional Plasma [in Russian], Énergoatomizdat, Moscow (1997).
25. A. V. Zabrodin and G. P. Prokopov, "Methods of numerical modeling of 2D unsteady flows of a heat-conducting gas in a three-temperature approximation," Preprint No. 25, Keldysh Inst. of Applied Mathematics, Russian Acad. of Sci., Moscow (1998).
26. G. P. Prokopov, "Approximation of the equations of state in the three-temperature model of unsteady flows of a heat-conducting gas," Preprint No. 32, Keldysh Inst. of Appl. Math., Russian Acad. of Sci., Moscow (2000).

