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THE SIMPLEST GALILEAN-INVARIANT

AND THERMODYNAMICALLY CONSISTENT CONSERVATION LAWS

UDC 517.9:539.3S. K. Godunov and V. M. Gordienko

This paper gives an introduction to formalization of Galilean-invariant and thermodynamically con-
sistent equations of mathematical physics in which unknowns are transformed in rotations by irre-
ducible representations of integer weights. This formalization is based on the theory of representations
of the group SO(3).

Introduction. Investigation of thermodynamically consistent equations and systems used in problems of
continuum mechanics and physics was begun in the sixties of the 20th century [1, 2]. Originally they were used to
construct examples of solutions. More recently, the number of problems studied with the help of such equations
has increased and the systems of equations have become more and more complex (see [3–14]). In this connection,
attempts have been made to use the techniques of group representation theory to describe rotationally-invariant
thermodynamically consistent systems [15, 16]. However, these attempts have not yet resulted in a transparent
theory.

In the present paper, which is a continuation of the group analysis of partial differential equations [12–16],
we study only the simplest thermodynamically consistent equations, with emphasis on detailed investigation of
their invariance under Galilean transformations of coordinate systems. Such transformations are a superposition of
a conversion to a coordinate system that moves at constant velocity and an orthogonal transformation of spatial
coordinates. In this case, unknown vector-functions are transformed with the help of orthogonal representations of
the rotation group SO(3) and spatial reflections. In the present paper, we consider only rotations, and therefore,
we do not distinguish between vectors and pseudovectors, which respond differently to rotations.

The tensor variables used in mechanics are generally transformed in rotations by representations of a rather
complex structure, and they can be decomposed into the simplest irreducible representations. It should be noted
that for tensors of the third and higher orders, such a decomposition is not unique. Therefore, much attention is
given to the symbolism connected with the use of irreducible representations.

As an example, we give the decomposition of an arbitrary orthogonal tensor of the second order into irre-
ducible components. Such a tensor consists of nine elements, which fill a 3× 3 matrix, and splits into three tensor
terms: a diagonal matrix with equal diagonal elements a = (a11 + a22 + a33)/3, a skew-symmetric tensor, and a
symmetric tensor with zero trace.

The quantity a is a scalar: it is not changed by rotations of the coordinate system. The three nonzero
elements of the skew-symmetric tensor is transformed as a 3D vector. The matrix of elements from the 5D linear
space of symmetric tensors of the second order with zero trace is conveniently written as
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In rotations, the vector (a−2, a−1, a0, a1, a2)t, composed of the coefficients aj , is transformed by the 5D irreducible
orthogonal representation of the rotation group.

All the conservation laws studied in this paper reduce to symmetric Friedrichs-hyperbolic equations. In such
conservation laws, dissipative terms, i.e., viscous friction and diffusion, are ignored. To take these into consideration,
the conservation laws should be modified. Here we give just one example of such modification for a scheme of
modeling thermal relaxation in a multitemperature medium.

All papers on the theory of representations of the rotation group [17–22] of which we are aware consider
only complex matrix elements of unitary representations of this group, whereas applications to problems of classical
mechanics should be based on real matrices of orthogonal representations, whose matrix elements are given in Sec. 3.
To find these elements, elementary but rather cumbersome calculations were made, which, in essence, repeat the
scheme used in the theory of unitary representations (see [23]).

We believe that the present research is of interest for both mathematicians and specialists in applied fields,
and the scheme proposed here can be extended to more complex equations and the equations of relativistic theory,
in which thermodynamically consistent conservation laws are also widely used.

1. Description of the “Simplest” System and Its Preliminary Analysis. The aim of this paper is to
describe a formal general scheme that covers many well-known Galilean-invariant systems of differential equations
of phenomenological mathematical physics, which contain both the laws of conservation of mass, momentum, and
energy and the law of increase (or conservation) of entropy. In writing each such system, we use the governing
“thermodynamic potential” L that results from systematization of the various thermodynamic potentials appearing
in concrete physical problems. The required functions are the variables q0, u1, u2, u3, q1, q2, . . . , and T on which
this potential depends:

L = L(q0, u1, u2, u3, q1, q2, . . . , T ).

It should be noted that in this paper, such “thermodynamic” variables also include the components u1, u2, and u3

of the velocity u = u(x1, x2, x3, t) at which points of a continuum move. The variable T is the temperature of the
medium and the density is characterized by the quantity Lq0 = Lq0(q0, u1, u2, u3, q1, q2, . . . , T ) which is related to
the variable q0 by means of the potential L.

Having specified the potential L, we can write a simple standard system of equations, whose properties
are then studied in detail. We indicate which equations of the system describe the conservation laws, and under
what constraint (on the thermodynamic potential) the systems are Galilean-invariant and ensure the (local) well-
posedness of the Cauchy problem. At the end of this section, we give possible generalizations in which forces of
viscosity, diffusion, etc., described by second-order derivatives are included in the equations. We now proceed to
preliminary analysis of this “simplest” system. In conversion to a coordinate system moving at constant velocity
relative to the initial coordinate system, the invariance of the equations chosen as the “simplest” is among the
questions discussed in this section, and the invariance under rotations is considered in Sec. 2.

As the “simplest” systems, we choose systems of equations in the form
∂Lq0
∂t

+
∂(ukL)q0
∂xk

= 0, (1.1a)

∂Lui
∂t

+
∂(ukL)ui
∂xk

= 0, (1.1b)

∂Lqγ
∂t

+
∂(ukL)qγ
∂xk

= −ϕγ , (1.1c)

∂LT
∂t

+
∂(ukL)T
∂xk

=
qγϕγ
T

(1.1d)

(summation over repeated indices k and γ is performed). The divergent equations (1.1a) and (1.1b) model the
laws of conservation of mass and momentum. The variables qγ describe the internal state of the medium, e.g.,
the content of various chemical substances in the medium, and the right sides ϕγ model the rates of change of the
parameters qγ , e.g., reaction rates. The quantity LT is the entropy per unit volume. By the law of increase of
entropy, the right sides ϕγ should satisfy the inequality qγϕγ > 0 (we assume that T > 0).

Assuming that the unknown functions q0, uk, qγ , and T are sufficiently smooth in the coordinates and time,
from Eqs. (1.1) we can derive, as a consequence, one more equation, which is compatible with them. For this, we
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multiply equality (1.1a) by q0, equalities (1.1b) by ui, and equalities (1.1c) and (1.1d) by qγ and T , respectively,
and use the identities

q0 dLq0 + ui dLui + qγ dLqγ + T dLT = dE, (1.2)

q0 d(ukLq0) + ui d(ukL)ui + qγ d(ukL)qγ + T d(ukL)T = d[uk(E + L)],

where E = q0Lq0 + uiLui + qγLqγ + TLT − L is the Legendre transform of the potential L.
Using identities (1.2), we can transform the linear combination of Eqs. (1.1) with the chosen coefficients to

the equality of divergent form

∂E

∂t
+
∂[uk(E + L)]

∂xk
= 0. (1.3)

In applied problems, this equality describes the law of conservation of energy. We note that here the zero right side
is obtained by a coordinated choice of the right sides −ϕγ and qγϕγ/T in Eqs. (1.1c) and (1.1d).

If the thermodynamic potential L is a convex function of its arguments, then (1.1) is a symmetric Friedrichs-
hyperbolic system of equations, and this ensures correct (local) solvability of the Cauchy problem for smooth initial
data. Indeed, denoting by ri the unknowns q0, u1, u2, u3, q1, q2, . . ., and T and by M (k) the products M (k) = ukL,
we can write system (1.1)

∂Lri
∂t

+
∂M

(k)
ri

∂xk
= −ψi

in equivalent form

Lrirj
∂rj
∂t

+M (k)
rirj

∂rj
∂xk

= −ψi (1.4)

with symmetric matrices of coefficients composed of the derivatives Lrirj and M (k)
rirj . The convexity of L is equivalent

to positive definiteness of the matrix of the coefficients at the derivatives with respect to t. By Friedrichs’ definition,
systems (1.4) are called hyperbolic.

For convenience, the law of conservation of momentum (1.1b) is written as

∂Lui
∂t

+
∂(ukLui + δikL)

∂xk
= 0. (1.5)

We describe the transformation of Eqs. (1.1) and (1.3) in conversion to a moving coordinate system that moves at
constant velocity relative to the initial system. Let the new coordinates yk be related to the old coordinates by the
equalities yk = xk − Ukt (Uk = const), so that the new velocity components are vk = uk − Uk. The remaining
unknowns q0, q1, q2, . . ., and T do not change.

Let

L̃(q0, v1, v2, v3, q1, q2, . . . , T ) = L(q0, v1 + U1, v2 + U2, v3 + U3, q1, q2, . . . , T ).

In conversion to the moving coordinate system, equations of the form

∂F

∂t
+
∂Gk
∂xk

= −f

become
∂F

∂t
+
∂(Gk − UkF )

∂yk
= −f.

Moreover, it is evident that

L̃q0 = Lq0 , L̃vk = Luk , L̃qγ = Lqγ , L̃T = LT .

Therefore, equalities (1.1a), (1.1c), and (1.1d) are written as

∂Lq0
∂t

+
∂[(ukL)q0 − UkLq0 ]

∂yk
= 0,

∂Lqγ
∂t

+
∂[(ukL)qγ − UkLqγ ]

∂yk
= −ϕγ ,

∂LT
∂t

+
∂[(ukL)T − UkLT ]

∂yk
=
ϕγqγ
T
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and after the substitution uk − Uk = vk, they take the form that differs from the initial form only in notation:

∂L̃q0
∂t

+
∂(vkL̃)q0
∂yk

= 0,
∂L̃qγ
∂t

+
∂(vkL̃)qγ
∂yk

= −ϕγ ,
∂L̃T
∂t

+
∂(vkL̃)T
∂yk

=
ϕγqγ
T

.

Equations (1.1b), which describe the law of conservation of momentum, transform similarly. Equality (1.5) is
written as

∂Lui
∂t

+
∂[(ukLui + δikL)− UkLui ]

∂yk
= 0,

and the law itself is finally written as

∂L̃vi
∂t

+
∂(vkL̃vi + δikL̃)

∂yk
= 0.

We now consider one more transformation that does not change the form of the equations entering into the “simplest”
system (1.1). Neither the coordinate system nor the unknown functions, except for q0, change in this transformation.
The function q0 is replaced by

Q0 = q0 − u1U1 − u2U2 − u3U3 −K (K = const). (1.6)

In this case,

L(q0, u1, u2, u3, q1, q2, . . . , T )

= L(Q0 + u1U1 + u2U2 + u3U3 +K,u1, u2, u3, q1, q2, . . . , T ) = L̃(Q0, u1, u2, u3, q1, q2, . . . , T ),

Lq0 = L̃Q0 , Luk = L̃uk − UkL̃Q0 , Lqγ = L̃qγ , LT = L̃T .

Making the above change, we transform the law of conservation of mass (1.1a) into the equation

∂L̃Q0

∂t
+
∂(ukL̃)Q0

∂xk
= 0. (1.7)

The momentum equations (1.5) are rearranged into the equations

∂(L̃ui − UiL̃Q0)
∂t

+
∂[uk(Lui − UiL̃Q0) + δikL̃]

∂xk
= 0,

which can be simplified if we write them in the form

∂L̃ui
∂t

+
∂(ukL̃ui + δikL̃)

∂xk
− Ui

[∂L̃Q0

∂t
+
∂(ukL̃)Q̃0

∂xk

]
= 0

and discard the last terms equal to zero [see (1.7)].
Equations (1.1c) and (1.1d) are not changed by replacement of q0 by Q0 and L by L̃ and are written as

∂L̃qγ
∂t

+
∂(ukL̃)qγ
∂xk

= −ϕγ ,
∂L̃T
∂t

+
∂(ukL̃)T
∂xk

=
ϕγqγ
T

.

Thus, we have shown the invariance of system (1.1) under conversion to a coordinate system moving at
constant velocity relative to the initial coordinate system. One can also assume that in conversion, the unknown
function q0, which enters into the mass conservation equation, also changes by the rule (1.6).

When converting to moving coordinates and keeping the standard designations ui and q0 for the new variables
ui − Ui and q0 + uiUi − UiUi/2, it is necessary, as was already noted, to change the formula for the generating
potential L by taking into account its dependence on the conversion parameters Ui. The expression specifying the
generating potential will not change if L(q0, u1, u2, u3, q1, q2, . . . , T ) = Λ(q0 + uiui/2, q1, q2, . . . , T ).

Below we consider in detail the constraints that should be imposed on system (1.1) in order that it be
invariant under orthogonal transformations (rotations) of the coordinate system, i.e., the constraints under which
it is Galilean-invariant.

We consider one of the simplest examples of the equations of mathematical physics that admit representation
in the form of (1.1).
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The one-dimensional equations

∂ρ

∂t
+
∂(ρu)
∂x

= 0,
∂(ρu)
∂t

+
∂(p+ ρu2)

∂x
= 0,

∂(ρS)
∂t

+
∂(ρSu)
∂x

= 0 (1.8)

describe the motion of a gas with the energy equation of state E = E(ρ, S), for which the pressure p and tempera-
ture T are determined by the formulas

p = ρ2Eρ(ρ, S), T = ES(ρ, S).

Equations (1.8) imply the law of conservation of energy

∂(ρ[E(ρ, S) + u2/2])
∂t

+
∂(ρu[E(ρ, S) + p/ρ+ u2/2])

∂x
= 0. (1.9)

To derive it, we need to multiply each of Eqs. (1.8) by the corresponding “integrating factor” q0 = E+p/ρ−TS−u2/2,
u, and T and sum up the products obtained. To make use of the necessary formalization, we introduce the notation
E = ρ[E(ρ, S) + u2/2] and define L so that

Lq0 = ρ, Lu = ρu, LT = ρS,

E = q0Lq0 + uLu + TLT − L = (E + p/ρ− TS − u2/2)ρ+ uρu+ TρS − L
≡ ρE + p+ ρu2/2− L = E + p− L.

Obviously, we should set L = p = ρ2Eρ(ρ, S). In this case,

(uL)q0 = uρ, (uL)u = uLu + L = ρu2 + p, (uL)T = uLT = uρS.

So, if we define q0, u, T , and L by means of the parametrization q0 = E(ρ, S)+ρEρ(ρ, S)−SES(ρ, S)−u2/2,
u = u, T = ES(ρ, S), and L = ρ2Eρ(ρ, S), then Eqs. (1.8) and the law of conservation of energy (1.9) are written in
divergent form

∂Lq0
∂t

+
∂(uL)q0
∂x

= 0,
∂Lu
∂t

+
∂(uL)u
∂x

= 0,

∂LT
∂t

+
∂(uL)T
∂x

= 0,
∂E

∂t
+
∂[u(E + L)]

∂x
= 0 (1.10)

(E = q0Lq0 + uLu + TLT − L).

In the example considered, when we convert to the moving spatial coordinate y = x−Ut with the velocity u replaced
by v so that u = v + U , the required function

q0 = E + p/ρ− TS − u2/2

should be replaced by

Q0 = E + p/ρ− TS − v2/2 = q0 + uU − U2/2.

As a result, Eqs. (1.10) hold their form, but we should replace x by y, u by v, and q0 by Q0 in them.
The above example explains why in conversion to a moving coordinate system we needed to examine whether

the attendant replacement of one of the required functions q0 by q0 + ukUk + const is possible.
Systems of equations of the form of (1.1), which are basic for further constructions, describe processes in

which viscous friction and diffusion are absent. If these should be taken into account, the equations should be
modified.

We now present a modification of the one-dimensional version of system (1.1). The viscosity µ should be
positive, and the matrix of the diffusion coefficients Dγβ should be nonnegative definite (summation over repeated
indices is performed):

∂Lq0
∂t

+
∂(uL)q0
∂x

= 0,
∂Lu
∂t

+
∂(L+ uLu − µ∂u/∂x)

∂x
= 0,

∂Lqγ
∂t

+
∂(uL)qγ
∂x

=
∂

∂x

(
Dγβ

∂qγ
∂x

)
− ϕγ , (1.11)

∂LT
∂t

+
∂(uL)T
∂x

=
1
T

(
µ
∂u2

∂x
+Dγβ

∂qγ
∂x

∂qβ
∂x

+ qγϕγ

)
.
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The first and second equations in (1.11) describe the laws of conservation of mass and momentum, respectively, and
the last equation describes the law of increase of entropy. For the solutions of system (1.11), the law of conservation
of energy holds:

∂E

∂t
+
∂[u(E + L)− µu∂u/∂x− qγDγβ ∂qβ/∂x]

∂x
= 0,

(1.12)

E = q0Lq0 + uLu + qγLqγ + TLT − L.

It is easy to check that as for Eqs. (1.1) and (1.3) considered above, the form of Eqs. (1.11) and (1.12) is retained
in conversion to a new coordinate system moving at constant velocity relative to the initial coordinate system.

We give another example [more general than (1.11) and (1.12)] of one-dimensional conservation laws for
multitemperature hydrodynamics confining ourselves to the variant with two temperatures. We chose this example
after familiarizing ourselves with studies of [24–26].

Let the internal energy be the sum of the partial energies E(j)(ρ, Sj), where Sj is the partial entropy (j = 1, 2).
In this case we should set

L =
∑
j

ρ2E
(j)
S (ρ, Sj),

and take

q0 =
∑
j

[E(j)(ρ, Sj) + ρE(j)
ρ (ρ, Sj)]− SjESj (ρ, Sj)−

u2

2
, Tj = E

(j)
Sj

as the required functions. We have

Lq0 = ρ, Lu = ρu, LTj = ρSj ,

q0Lq0 + uLu +
∑
j

TjLTj − L = ρ

(∑
j

E(j)(ρ, Sj) +
u2

2

)
≡ E.

By analogy with (1.11) and (1.12), the equations for one-dimensional viscous heat-conducting hydrodynamics can
be written as

∂Lq0
∂t

+
∂(uLq0)
∂x

= 0,
∂Lu
∂t

+
∂(L+ uLu − µ∂u/∂x)

∂x
= 0,

∂LT1

∂t
+
∂(uLT1 − (K1/T1) ∂T1/∂x)

∂x
=
K1

T 2
1

(∂T1

∂x

)2

+ a
T2 − T1

T1
+

µ

T1

(∂u
∂x

)2

,

∂LT2

∂t
+
∂(uLT2 − (K2/T2) ∂T2/∂x)

∂x
=
K2

T 2
2

(∂T2

∂x

)2

+ a
T1 − T2

T2
,

∂E

∂t
+
∂[u(E + L)−K1 ∂T1/∂x−K2 ∂T2/∂x− µu∂u/∂x]

∂x
= 0.

Here the last equality (law of conservation of energy) is obtained as a linear combination of all preceding equations
taken with the coefficients q0, u, T1, and T2, respectively. Additional terms (a/T1)(T2 − T1) and (a/T2)(T1 − T2)
with positive coefficient a are included in the right sides of the third and fourth equations (entropy equations).
These terms model the equalization of the temperatures T1 and T2. The multipliers 1/T1 and 1/T2 in these terms
are chosen so that inclusion of these terms does not lead to violation of the law of conservation of energy. It is
essential that summation of the entropy equations yields the equality

∂[ρ(S1 + S2)]
∂t

+
∂[ρu(S1 + S2)− (K1/T1) ∂T1/∂x− (K2/T2) ∂T2/∂x]

∂x

=
K1

T 2
1

(∂T1

∂x

)2

+
K2

T 2
2

(∂T2

∂x

)2

+
a

T1T2
(T2 − T1)2 +

µ

T1

(∂u
∂x

)2

,

which can be interpreted as the law of increase of total entropy. This increase is a consequence of the presence of
the viscous stresses µ∂u/∂x, the gradients of the temperatures T1 and T2, and the relaxation process, which yields
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a positive contribution if T2 6= T1. Obviously, the construction described here can be automatically extended to a
larger number of temperatures Tj .

Concluding the analysis of the simplest examples of account of dissipative processes that do not contradict the
conservation laws for mass, momentum and energy and the law of increase of entropy, we note that the classification
of the dissipative terms admitted by the Galilean invariance of equations is an important problem, which requires
further investigation.

2. Invariance under Rotations and Galilean Transformations. We establish constraints on the
“simplest” systems of equations (see Sec. 1) under which they describe processes independent of various rotations
of the coordinate systems. Each such rotation is specified by an orthogonal real matrix P (PtP = I3) of order 3×3
with positive determinant det P = +1. The collection of these matrices constitutes the group SO(3).

The transformation P ∈ SO(3) converts the coordinates x1, x2, and x3 of a point x into the new coordinates
y1, y2, and y3 by the formula

y =

 y1

y2

y3

 = P

 x1

x2

x3

 = Px.

The old coordinates can be calculated in terms of the new coordinates using the inverse matrix P−1 = Pt:

x = P−1y = Pty.

After the transformation P, the velocity field

u(x, t) =

 u1(x1, x2, x3, t)
u2(x1, x2, x3, t)
u3(x1, x2, x3, t)


is given by the vector-function v(y, t) calculated in terms of u(x, t) by the formula

v(y, t) = Pu(P−1y, t).

We now unite the unknown functions that describe the state of the medium into a vector-function q = (q1, q2, . . .)t,
which should also be transformed by rotations of the coordinate system. Each coordinate transformation described
by the matrix P should correspond to an orthogonal matrix Ω = Ω(P), which converts a vector q = q(x, t) into
p = p(y, t) = Ωq(P−1y, t). In successive transformations y = P1x and z = P2y = P2P1x, the unknown vectors are
transformed successively (q → p→ r) using the corresponding orthogonal matrices Ω1 and Ω2:

r = r(z, t) = Ω2p(P−1
2 z, t),

p(P−1
2 z, t) = p(y, t) = Ω1q(P−1

1 y, t) = Ω1q(P−1
1 P−1

2 z, t),

r = Ω2Ω1q(P−1
1 P−1

2 z, t).

The correspondence between transformations P of the spatial coordinates and the corresponding transfor-
mations Ω of the unknown vector-function q(x, t) should be a representation of the group SO(3) by orthogonal
matrices.

The generating potential L = L(u, q, T ) will be assumed to be invariant, so that

L(u, q, T ) = L(Pu,Ωq, T ) = L(v,p, T ). (2.1)

When investigating one or another concrete system, we shall assume that the finite-dimensional orthogonal repre-
sentation Ω(P) which keeps the generating potential invariant for every P ∈ SO(3) is known.

In quantum-mechanical problems of mathematical physics, not only orthogonal but also unitary represen-
tations can be used. In this case, the unknowns qj should be assumed to be complex. In Sec. 3 we shall consider
possible expedients that allow us to use the analysis of invariance of equations in the case of such generalizations
as well.

Whatever the function f(y, t) may be:

f(y, t) = f(y1, y2, y3, t) = f(Px, t) = f(P1jxj ,P2jxj ,P3jxj , t),
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the following equalities are valid by virtue of the orthogonality of the transformation P:

fxj = fyiPij , vi = Pijuj , uj = Pjivi, uifxi ≡ ujfxj = vifyiPjiPij = vifyi . (2.2)

Moreover, scalars, in particular, the temperature T , do not change in this transformation.
The equality (for dT = 0)

dL = Lui dui + Lqγ dqγ = LvjPij dui + LpβΩβα dqα

and the orthogonality of P and Ω imply that

Lui = PjiLvj , Lu = PtLv, Lv = PLu, (2.3)

Lqα = ΩβαLpβ , Lq = ΩtLp, Lp = ΩLq.

For every scalar function g(y, t) = g(y1, y2, y3, t) = g(P1jxj ,P2jxj ,P3jxj , t), its gradients in the coordinate sys-
tems x and y are linked by the equality

∂g

∂y
=

 gy1

gy2

gy3

 = P

 gx1

gx2

gx3

 = P
∂g

∂x
. (2.4)

We consider the system of equations specified by the invariant [see (2.1)] potential L:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukLui)
∂xk

+
∂L

∂xi
= 0, (2.5)

∂Lqγ
∂t

+
∂(ukLqγ )
∂xk

= −ϕγ ,
∂LT
∂t

+
∂(ukLT )
∂xk

=
qγϕγ
T

.

We assume that in rotations of the coordinate system, the vector q with components qγ is transformed by a certain
representation of the rotation group. The scalar quantities q0 and T , which do not change in rotations, can be
included in the number of the components of the vector q, assuming that ϕ0 = 0 and ϕT = qγϕγ/T .

It follows from (2.2)–(2.4) that the orthogonal transformations P and Ω

y = Px, v(y, t) = Pu(P−1y, t), p(y, t) = Ωq(P−1y, t),

p0(y, t) = q0(P−1y, t), T̂ = T (P−1y, t), ϕ̂γ(y, t) = ϕγ(P−1y, t)

convert system (2.5) into a system of equations that differs from (2.5) only in notation:

∂Lp0

∂t
+
∂(vkLp0)
∂xk

= 0,
∂Lvi
∂t

+
∂(vkLvi)
∂xk

+
∂L

∂xi
= 0,

∂Lpγ
∂t

+
∂(vkLpγ )
∂xk

= −ϕ̂γ ,
∂LT̂
∂t

+
∂(vkLT̂ )
∂xk

=
pγϕ̂γ

T̂
.

This suggests that system (2.5) is invariant under rotations under the above assumptions of invariance of the
generating thermodynamic potential L, which depends on the unknown functions — vectors that are rotationally
transformed by irreducible representations.

System (2.5) coincides with the “simplest” system (1.1) introduced in Sec. 1 and can also be supplemented
with the equality compatible with it:

∂E

∂t
+
∂[uk(E + L)]

∂xk
= 0, E = q0Lq0 + uiLui + qγLqγ + TLT − L. (2.6)

It was shown in Sec. 1 that the system of equations considered is invariant under conversion to a coordinate system
moving at constant velocity if the generating potential is given in the form L = Λ(q0 + uiui/2, q1, q2, . . . , T ).

Thus, by virtue of the invariance of the equations under rotations of the coordinate systems (see Sec. 1), we
can assert that system (1.1), (1.3) or system (2.5), (2.6), which coincides with it, is invariant under arbitrary Galilean
transformations. Obviously, it is also invariant under a parallel translation of the coordinate system involving shift
of its origin.
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3. Concrete Definition of the Required Functions in the Systems under Investigation. In Secs. 1
and 2, we have described the structure of a Galilean-invariant special system of partial differential equations which
contains conservation laws for mass, momentum, and energy and the law of conservation (or increase) of entropy.
In this system, the unknown functions are the velocity field u ≡ (u1, u2, u3) and the field of a certain, as a rule,
multicomponent vector q that is transformed in rotations by an orthogonal representation of the rotation group or
its universal covering group SU(2) (multiplicative group of quaternions).

We change the numbering of the independent variables x1, x2, and x3 and the velocity components u1, u2,
and u3. For further considerations, it is more convenient to use the notation x−1, x0, and x1 and u−1, u0, and u1,
respectively.

We assume that the vector q is compound, and its parts are “vector components” — the vectors q(A1),
q(A2), . . . , each of which is transformed by an irreducible orthogonal representation of the corresponding weight Aj .

Among the vector components there may be more than one component with the same weight A.
If the weight A is integer, the vector q(A) should have odd number (2A + 1) of components. For these

components — real numbers q(A)
a — we use integer numbering: a = −A, −A+ 1, . . . , −1, 0, 1, . . . , A− 1, and A.

In this case, the zero weight A = 0 corresponds to one scalar component q(0)
0 , which does not change in rotations.

In the case of a half-integer weight A, it is common to use unitary representations in a complex vector space
of even dimension 2A + 1. In this space, each vector q(A) has 2A + 1 complex components q(A)

a + ir
(A)
a (a = −A,

−A + 1, . . . , −1/2, 1/2, . . . , A − 1, and A), and the representation itself induces in natural way an orthogonal
representation in the space of 2(2A+ 1)-dimensional real vectors q(A) with the components q−A, q−A+1, . . ., and qA
and r−A, r−A+1, . . ., and rA. In the examples below, we use exactly this realization of orthogonal representations
of the group SU(2) or the rotation group SO(3). In the case of representations of half-integer weight, each rotation
from SO(3) through an angle of 2π about a certain axis corresponds to a transformation of the vector q(A) into
the vector −q(A), whose all components −q(A)

a and −r(A)
a are opposite in signs to the components q(A)

a and r
(A)
a of

the initial vector q(A). For example, the vector variable q(1/2), which is transformed by an orthogonal (two-valued)
representation of weight 1/2, has four components q−1/2, r−1/2, q1/2, and r1/2. Each rotation g ∈ SO(3) given by
the matrix g = g0(ψ0)g−1(θ−1)g0(ϕ0) represented as the product of rotations around the coordinate axes indexed
“zero,” “minus one,” and again “zero” corresponds to the orthogonal transformation of the vector q(1/2) described
by the matrix

Ω1/2(ψ0, θ−1, ϕ0) =



cos
θ−1

2
cos

ϕ0 + ψ0

2
sin

θ−1

2
cos

ϕ0 − ψ0

2
cos

θ−1

2
sin

ϕ0 + ψ0

2
− sin

θ−1

2
sin

ϕ0 − ψ0

2

− sin
θ−1

2
cos

ϕ0 − ψ0

2
cos

θ−1

2
cos

ϕ0 + ψ0

2
− sin

θ−1

2
sin

ϕ0 − ψ0

2
− cos

θ−1

2
sin

ϕ0 + ψ0

2

− cos
θ−1

2
sin

ϕ0 + ψ0

2
sin

θ−1

2
sin

ϕ0 − ψ0

2
cos

θ−1

2
cos

ϕ0 + ψ0

2
sin

θ−1

2
cos

ϕ0 − ψ0

2

sin
θ−1

2
sin

ϕ0 − ψ0

2
cos

θ−1

2
sin

ϕ0 + ψ0

2
− sin

θ−1

2
cos

ϕ0 − ψ0

2
cos

θ−1

2
cos

ϕ0 + ψ0

2


.

Each rotation g ∈ SO(3), g = g0(ψ0)g−1(θ−1)g0(ϕ0) is a rotation through angle ω = ψ0 around the axis
into which the x0 axis is converted by successive rotations g0(ϕ0) and g−1(θ−1). It should be noted that rotation
through an angle ψ0 + 2π around the same axis, i.e., rotation with the set of parameters ψ0 + 2π, θ−1, and ϕ0,
corresponds to Ω1/2(ψ0 + 2π, θ−1, ϕ0) = −Ω1/2(ψ0, θ−1, ϕ0).

The above example of an orthogonal representation is obtained from a 2D unitary representation, in which
the 2D complex vector

q(1/2) =
[
q−1/2 + ir−1/2

q1/2 + ir1/2

]
is transformed using unitary matrices of the form(

α β

−β̄ ᾱ

)
, α = e−i(ϕ0+ψ0)/2 cos

θ−1

2
, β = ei(ϕ0−ψ0)/2 sin

θ−1

2
.

As an example of a Galilean-invariant system in which part of the unknowns, namely, T , q0, u−1, u0, and u1

are transformed by rotations according to one-valued representations (of weights 0 and 1), and the other part
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is transformed by a two-valued representation (of weight 1/2), we consider the equations generated by a certain
potential

L = L(q0;u−1, u0, u1; q−1/2, r−1/2, q1/2, r1/2, T ) = Λ(q0 + uiui/2, q−1/2, r−1/2, q1/2, r1/2, T ),

which is invariant under rotations:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukL)ui
∂xk

= 0,

∂Lq−1/2

∂t
+
∂(ukLq−1/2)

∂xk
= −r1/2,

∂Lq1/2
∂t

+
∂(ukLq1/2)

∂xk
= r−1/2,

∂Lr−1/2

∂t
+
∂(ukLr−1/2)

∂xk
= −q1/2,

∂Lr1/2
∂t

+
∂(ukLr1/2)

∂xk
= q−1/2,

∂LT
∂t

+
∂(ukLT )
∂xk

= 0,
∂E

∂t
+
∂[uk(E + L)]

∂xk
= 0,

E = ukLuk + qjLqj + rjLrj + TLT − L.

The results obtained in Secs. 1 and 2 show that the system considered is compatible, although overdetermined since
it has 10 equations for 9 unknowns functions. The zero right side in the entropy equation was obtained by a special
choice of the right sides.

The short notation q(A) is used for a vector with components q(A)
a that is transformed by an irreducible repre-

sentation of weight A. Sometimes, it is more convenient to deal with vector-functions represented by divalent tensors
q

(1,A)
kα with the second subscript a Greek letter and the first subscript a Roman letter. Each rotation P(1) of the

coordinate system in the representation of weight A corresponds to an orthogonal transformation (representation)
Ω(A) given by a real matrix which has order (2A+ 1)× (2A+ 1) for integer A and order [2(2A+ 1)]× [2(2A+ 1)] for
half-integer A. Obviously, the Greek subscript α runs through the corresponding number of various values, whereas
the Roman subscript k takes only three values (for the chosen numbering, k = −1, 0, and 1).

The tensor q(1,A)
kα is transformed by the rule [q(1,A)

kα ]′ = Ω(A)
αβ P

(1)
kj q

(1,A)
jβ . The representation generated by such

transformations is reducible if A 6= 0 and, as is known, it is decomposed into irreducible representations.
As an example, we give a compatible Galilean-invariant overdetermined system, where q0 is a scalar, uj are

the velocity components, rjα are the components of a tensor r(1,1), and T is the temperature:

∂Lq0
∂t

+
∂(ukLq0)
∂xk

= 0,
∂Lui
∂t

+
∂(ukL)ui
∂xk

= 0,

∂Lriα
∂t

+
∂(ukLrkα)

∂xk
= −ϕiα,

∂LT
∂t

+
∂(ukLT )
∂xk

=
rjαϕjα
T

,

∂E

∂t
+
∂[uk(E + L)]

∂xk
= 0, E = q0Lq0 + uiLui + rjαLrjα + TLT − L.

The potential L, which generates this system, is an invariant function of all the unknowns q0, ui, rjα, and T . The
right sides −ϕiα should be determined so as not to violate the invariance. The equations with zero right sides can
be regarded as exact conservation laws for mass, momentum, and energy.

In conclusion we give matrices Ω(N)(ψ0, θ−1, ϕ0) = Ω(N)(0, 0, ψ0)Ω(N)(0, θ−1, 0)Ω(N)(0, 0, ϕ0), which in the
standard canonical basis give the representation (of integer weight N) of the rotations P(ψ0, θ−1, ϕ0) specified by
Euler’s angles ϕ0, θ−1, and ψ0. The subscripts correspond to the numbers of the coordinate axes around which the
rotation is performed. It should be noted that P(ψ0, θ−1, ϕ0) = Ω(1)(ψ0, θ−1, ϕ0).

The matrix elements corresponding to the rotation ϕ0 are calculated from the formulas

Ω(N)
m,m(ϕ0, 0, 0) = Ω(N)

m,m(0, 0, ϕ0) = cosmϕ0, Ω(N)
−m,m(ϕ0, 0, 0) = Ω(N)

−m,m(0, 0, ϕ0) = sinmϕ0,

if N > |m| > 1 and Ω(N)
0,0 (0, 0, ϕ0) = 1 or Ω(N)

k,m(0, 0, ϕ0) = 0 if |k| 6= |m|.
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It is convenient to express the elements Ω(N)
km (0, θ−1, 0) = (−1)k+mΩ(N)

mk (0, θ−1, 0) in terms of µ = cos θ−1

(1 6 k and m 6 N):

Ω(N)
±k,±m(0, θ−1, 0) =

(−1)N+m

2N (1− µ2)(k+m)/2

√
(N +m)!

(N − k)!(N + k)!(N −m)!

×
{

(1− µ)k
dN−m

dµN−m
[(1 + µ)N+k(1− µ)N−k]± (−1)k(1 + µ)k

dN−m

dµN−m
[(1 + µ)N−k(1− µ)N+k]

}
,

Ω(N)
k,0 (0, θ−1, 0) = (−1)kΩ(N)

0,k (0, θ−1, 0) =
(−1)N+1

N !2N

√
2(N + k)!
(N − k)!

1
(1− µ2)k/2

dN−k

dµN−k
(1− µ2)N ,

Ω(N)
0,0 (0, θ−1, 0) =

(−1)N

N !2N
dN

dµN
(1− µ2)N ,

Ω(N)
−k,m(0, θ−1, 0) = Ω(N)

k,−m(0, θ−1, 0) = Ω(N)
−k,0(0, θ−1, 0) = Ω(N)

0,−m(0, θ−1, 0) = 0.

Conclusions. This paper reports results of investigation of the hyperbolicity, Galilean invariance, and
thermodynamical consistency of the simplest conservation laws encountered in mathematical physics.

A special choice of unknown vector-functions that are transformed by irreducible orthogonal representations
of the rotation group is also proposed. The use of these vector-functions as variables will simplify the study (which
was begun in [15, 16]) of the relationship between the theory of group representations and the systematization of
the differential equations describing evolutionary processes in various continuous media.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 01-01-00766).
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